Sliced Wasserstein Kernel for Persistence Diagrams
نویسندگان
چکیده
Persistence diagrams (PDs) play a key role in topological data analysis (TDA), in which they are routinely used to describe topological properties of complicated shapes. PDs enjoy strong stability properties and have proven their utility in various learning contexts. They do not, however, live in a space naturally endowed with a Hilbert structure and are usually compared with non-Hilbertian distances, such as the bottleneck distance. To incorporate PDs in a convex learning pipeline, several kernels have been proposed with a strong emphasis on the stability of the resulting RKHS distance w.r.t. perturbations of the PDs. In this article, we use the Sliced Wasserstein approximation of the Wasserstein distance to define a new kernel for PDs, which is not only provably stable but also discriminative (with a bound depending on the number of points in the PDs) w.r.t. the first diagram distance between PDs. We also demonstrate its practicality, by developing an approximation technique to reduce kernel computation time, and show that our proposal compares favorably to existing kernels for PDs on several benchmarks.
منابع مشابه
Riemannian Manifold Kernel for Persistence Diagrams
Algebraic topology methods have recently played an important role for statistical analysis with complicated geometric structured data. Among them, persistent homology is a well-known tool to extract robust topological features, and outputs as persistence diagrams. Unfortunately, persistence diagrams are point multi-sets which can not be used in machine learning algorithms for vector data. To de...
متن کاملProbability measures on the space of persistence diagrams
This paper shows that the space of persistence diagrams has properties that allow for the definition of probability measures which support expectations, variances, percentiles and conditional probabilities. This provides a theoretical basis for a statistical treatment of persistence diagrams, for example computing sample averages and sample variances of persistence diagrams. We first prove that...
متن کاملSliced-Wasserstein Autoencoder: An Embarrassingly Simple Generative Model
In this paper we study generative modeling via autoencoders while using the elegant geometric properties of the optimal transport (OT) problem and the Wasserstein distances. We introduce Sliced-Wasserstein Autoencoders (SWAE), which are generative models that enable one to shape the distribution of the latent space into any samplable probability distribution without the need for training an adv...
متن کاملProbabilistic Fr\'echet Means for Time Varying Persistence Diagrams
In order to use persistence diagrams as a true statistical tool, it would be very useful to have a good notion of mean and variance for a set of diagrams. In [21], Mileyko and his collaborators made the first study of the properties of the Fréchet mean in (Dp,Wp), the space of persistence diagrams equipped with the p-th Wasserstein metric. In particular, they showed that the Fréchet mean of a f...
متن کاملPersistence weighted Gaussian kernel for topological data analysis
Topological data analysis (TDA) is an emerging mathematical concept for characterizing shapes in complex data. In TDA, persistence diagrams are widely recognized as a useful descriptor of data, and can distinguish robust and noisy topological properties. This paper proposes a kernel method on persistence diagrams to develop a statistical framework in TDA. The proposed kernel satisfies the stabi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017